Research

Recent publications and preprints, auto-sorted. For the latest updates, check out Google Scholar

2024

  1. Coercing LLMs to Do and Reveal (Almost) Anything
    Jonas Geiping, Alex Stein, Manli Shu, Khalid SaifullahYuxin Wen, and Tom Goldstein
    arxiv:2402.14020[cs], Feb 2024
  2. Be like a Goldfish, Don’t Memorize! Mitigating Memorization in Generative LLMs
    Abhimanyu HansYuxin WenNeel JainJohn Kirchenbauer, Hamid Kazemi, Prajwal Singhania, Siddharth Singh, Gowthami SomepalliJonas Geiping, Abhinav Bhatele, and 1 more author
    arxiv:2406.10209[cs], Jun 2024
  3. Be like a Goldfish, Don’t Memorize! Mitigating Memorization in Generative LLMs
    Abhimanyu HansJohn KirchenbauerYuxin WenNeel Jain, Hamid Kazemi, Prajwal Singhania, Siddharth Singh, Gowthami SomepalliJonas Geiping, Abhinav Bhatele, and 1 more author
    In The Thirty-eighth Annual Conference on Neural Information Processing Systems, Sep 2024
  4. Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
    Abhimanyu HansAvi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha SahaMicah GoldblumJonas Geiping, and Tom Goldstein
    In Proceedings of the Forty-first International Conference on Machine Learning, Jul 2024
  5. Bring Your Own Data! Self-Sensitivity Evaluation for Large Language Models
    In First Conference on Language Modeling, Aug 2024
  6. What Do We Learn from Inverting CLIP Models?
    Hamid Kazemi, Atoosa Chegini, Jonas Geiping, Soheil Feizi, and Tom Goldstein
    arxiv:2403.02580[cs], Mar 2024
  7. LMD3: Language Model Data Density Dependence
    John Kirchenbauer, Garrett Honke, Gowthami SomepalliJonas Geiping, Katherine Lee, Daphne Ippolito, Tom Goldstein, and David Andre
    In First Conference on Language Modeling, Aug 2024
  8. Transformers Can Do Arithmetic with the Right Embeddings
    Sean Michael McLeish, Arpit Bansal, Alex Stein, Neel JainJohn Kirchenbauer, Brian R. Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, Jonas GeipingAvi Schwarzschild, and 1 more author
    In The Thirty-eighth Annual Conference on Neural Information Processing Systems, Sep 2024
  9. AI Risk Management Should Incorporate Both Safety and Security
    Xiangyu Qi, Yangsibo Huang, Yi Zeng, Edoardo Debenedetti, Jonas Geiping, Luxi He, Kaixuan Huang, Udari Madhushani, Vikash Sehwag, Weijia Shi, and 15 more authors
    arxiv:2405.19524[cs], May 2024
  10. Efficiently Dispatching Flash Attention For Partially Filled Attention Masks
    Agniv Sharma, and Jonas Geiping
    arxiv:2409.15097[cs], Sep 2024
  11. CALVIN: Improved Contextual Video Captioning via Instruction Tuning
    Gowthami Somepalli, Arkabandhu Chowdhury, Jonas Geiping, Ronen Basri, Tom Goldstein, and David W. Jacobs
    In The Thirty-eighth Annual Conference on Neural Information Processing Systems, Sep 2024
  12. Investigating Style Similarity in Diffusion Models
    Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah GoldblumJonas Geiping, Abhinav Shrivastava, and Tom Goldstein
    In Proceedings of the European Conference on Computer Vision, Apr 2024
  13. Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion
    Hossein Souri, Arpit Bansal, Hamid Kazemi, Liam Fowl, Aniruddha SahaJonas Geiping, Andrew Gordon Wilson, Rama Chellappa, Tom Goldstein, and Micah Goldblum
    arxiv:2403.16365[cs], Mar 2024
  14. Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models
    Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas GeipingTom Goldstein, and Nicholas Carlini
    In The Thirty-eighth Annual Conference on Neural Information Processing Systems, Sep 2024
  15. Object Recognition as Next Token Prediction
    Kaiyu Yue, Bor-Chun Chen, Jonas Geiping, Hengduo Li, Tom Goldstein, and Ser-Nam Lim
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Sep 2024

2023

  1. A Cookbook of Self-Supervised Learning
    Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, and 9 more authors
    arxiv:2304.12210[cs], Apr 2023
  2. Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise
    Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah GoldblumJonas Geiping, and Tom Goldstein
    In Thirty-Seventh Conference on Neural Information Processing Systems, Nov 2023
  3. Universal Guidance for Diffusion Models
    Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah GoldblumJonas Geiping, and Tom Goldstein
    In The Twelfth International Conference on Learning Representations, Oct 2023
  4. A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning
    Valeriia Cherepanova, Roman Levin, Gowthami SomepalliJonas Geiping, C. Bayan Bruss, Andrew Gordon Wilson, Tom Goldstein, and Micah Goldblum
    In Thirty-Seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, Nov 2023
  5. Loss Landscapes Are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent
    Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas GeipingMicah Goldblum, and Tom Goldstein
    In The Eleventh International Conference on Learning Representations, Feb 2023
  6. Panning for Gold in Federated Learning: Targeted Text Extraction under Arbitrarily Large-Scale Aggregation
    Hong-Min Chu, Jonas Geiping, Liam H. Fowl, Micah Goldblum, and Tom Goldstein
    In International Conference on Learning Representations, Feb 2023
  7. Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models
    Liam H. Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojciech Czaja, Micah Goldblum, and Tom Goldstein
    In International Conference on Learning Representations, Feb 2023
  8. Cramming: Training a Language Model on a Single GPU in One Day.
    Jonas Geiping, and Tom Goldstein
    In Proceedings of the 40th International Conference on Machine Learning, Jul 2023
  9. How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
    Jonas GeipingMicah GoldblumGowthami Somepalli, Ravid Shwartz-Ziv, Tom Goldstein, and Andrew Gordon Wilson
    In International Conference on Learning Representations, Feb 2023
  10. A Survey on the Possibilities & Impossibilities of AI-generated Text Detection
    Soumya Suvra Ghosal, Souradip Chakraborty, Jonas Geiping, Furong Huang, Dinesh Manocha, and Amrit Bedi
    Transactions on Machine Learning Research, Oct 2023
  11. Baseline Defenses for Adversarial Attacks Against Aligned Language Models
    arxiv:2309.00614[cs], Sep 2023
  12. NEFTune: Noisy Embeddings Improve Instruction Finetuning
    Neel Jain, Ping-yeh Chiang, Yuxin WenJohn Kirchenbauer, Hong-Min Chu, Gowthami Somepalli, Brian R. Bartoldson, Bhavya Kailkhura, Avi SchwarzschildAniruddha Saha, and 3 more authors
    In The Twelfth International Conference on Learning Representations, Oct 2023
  13. On the Reliability of Watermarks for Large Language Models
    John KirchenbauerJonas GeipingYuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha SahaMicah Goldblum, and Tom Goldstein
    In The Twelfth International Conference on Learning Representations, Oct 2023
  14. A Watermark for Large Language Models
    John KirchenbauerJonas GeipingYuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein
    In Proceedings of the 40th International Conference on Machine Learning, Jul 2023
  15. Augmenters at SemEval-2023 Task 1: Enhancing CLIP in Handling Compositionality and Ambiguity for Zero-Shot Visual WSD through Prompt Augmentation and Text-To-Image Diffusion
    Jie Li, Yow-Ting Shiue, Yong-Siang Shih, and Jonas Geiping
    In Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), Jul 2023
  16. Differentiable Architecture Search: A One-Shot Method?
    Jovita Lukasik, Jonas GeipingMichael Moeller, and Margret Keuper
    In AutoML Conference 2023, Aug 2023
  17. Seeing in Words: Learning to Classify through Language Bottlenecks
    In ICLR TinyPapers, May 2023
  18. JPEG Compressed Images Can Bypass Protections Against AI Editing
    Pedro Sandoval-SeguraJonas Geiping, and Tom Goldstein
    arxiv:2304.02234[cs], Apr 2023
  19. What Can We Learn from Unlearnable Datasets?
    In Thirty-Seventh Conference on Neural Information Processing Systems, Nov 2023
  20. On the Exploitability of Instruction Tuning
    Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping, Chaowei Xiao, and Tom Goldstein
    In Thirty-Seventh Conference on Neural Information Processing Systems, Nov 2023
  21. A Simple and Efficient Baseline for Data Attribution on Images
    arxiv:2311.03386[cs], Nov 2023
  22. Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nov 2023
  23. Understanding and Mitigating Copying in Diffusion Models
    In Thirty-Seventh Conference on Neural Information Processing Systems, Nov 2023
  24. Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries
    Yuxin Wen, Arpit Bansal, Hamid Kazemi, Eitan Borgnia, Micah GoldblumJonas Geiping, and Tom Goldstein
    In International Conference on Learning Representations, Feb 2023
  25. Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
    In Thirty-Seventh Conference on Neural Information Processing Systems, Nov 2023
  26. STYX: Adaptive Poisoning Attacks Against Byzantine-Robust Defenses in Federated Learning
    Yuxin WenJonas GeipingMicah Goldblum, and Tom Goldstein
    In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun 2023
  27. Tree-Rings Watermarks: Invisible Fingerprints for Diffusion Images
    Yuxin WenJohn KirchenbauerJonas Geiping, and Tom Goldstein
    In Thirty-Seventh Conference on Neural Information Processing Systems, Nov 2023

2022

  1. A Simple Strategy to Provable Invariance via Orbit Mapping
    Kanchana Vaishnavi Gandikota, Jonas Geiping, Zorah Lähner, Adam Czapliński, and Michael Moeller
    In Asian Conference on Computer Vision (ACCV), Dec 2022
  2. How to Do a Vocab Swap? A Study of Embedding Replacement for Pre-trained Transformers
    Neel JainJohn KirchenbauerJonas Geiping, and Tom Goldstein
    Nov 2022
  3. K-SAM: Sharpness-Aware Minimization at the Speed of SGD
    Renkun Ni, Ping-yeh Chiang, Jonas GeipingMicah Goldblum, Andrew Gordon Wilson, and Tom Goldstein
    arxiv:2210.12864[cs], Oct 2022
  4. Autoregressive Perturbations for Data Poisoning
    Pedro Sandoval-SeguraVasu SinglaJonas GeipingMicah GoldblumTom Goldstein, and David W. Jacobs
    In Advances in Neural Information Processing Systems, Dec 2022
  5. Poisons That Are Learned Faster Are More Effective
    Pedro Sandoval-SeguraVasu Singla, Liam Fowl, Jonas GeipingMicah Goldblum, David Jacobs, and Tom Goldstein
    In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun 2022
  6. Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
    Yuxin WenJonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein
    In Proceedings of the 39th International Conference on Machine Learning, Jun 2022
  7. Thinking Two Moves Ahead: Anticipating Other Users Improves Backdoor Attacks in Federated Learning
    Yuxin WenJonas Geiping, Liam Fowl, Hossein Souri, Rama Chellappa, Micah Goldblum, and Tom Goldstein
    In AdvML Frontiers Workshop at 39th International Conference on Machine Learning, Jun 2022

2021

  1. DP-InstaHide: Provably Defusing Poisoning and Backdoor Attacks with Differentially Private Data Augmentations
    Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam Fowl, Arjun Gupta, Amin Ghiasi, Furong Huang, Micah Goldblum, and Tom Goldstein
    In ICLR 2021 Workshop on Security and Safety in Machine Learning Systems, Mar 2021
  2. Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff
    Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas GeipingMicah GoldblumTom Goldstein, and Arjun Gupta
    In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Jun 2021
  3. Adversarial Examples Make Strong Poisons
    Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and Tom Goldstein
    In Advances in Neural Information Processing Systems, Jun 2021
  4. Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure Dataset Release
    Liam Fowl, Ping-yeh Chiang, Micah GoldblumJonas Geiping, Arpit Bansal, Wojtek Czaja, and Tom Goldstein
    In ICLR 2021 Workshop on Security and Safety in Machine Learning Systems, Feb 2021
  5. Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models
    Liam Fowl, Jonas Geiping, Wojciech Czaja, Micah Goldblum, and Tom Goldstein
    In International Conference on Learning Representations, Sep 2021
  6. DARTS for Inverse Problems: A Study on Hyperparameter Sensitivity
    Jonas Geiping, Jovita Lukasik, Margret Keuper, and Michael Moeller
    arXiv:2108.05647 [cs], Aug 2021
  7. Modern Optimization Techniques in Computer Vision
    Jonas Geiping
    Aug 2021
  8. Stochastic Training Is Not Necessary for Generalization
    Jonas GeipingMicah Goldblum, Phil Pope, Michael Moeller, and Tom Goldstein
    In International Conference on Learning Representations, Sep 2021
  9. What Doesn’t Kill You Makes You Robust(Er): Adversarial Training against Poisons and Backdoors
    Jonas Geiping, Liam Fowl, Gowthami SomepalliMicah GoldblumMichael Moeller, and Tom Goldstein
    In ICLR 2021 Workshop on Security and Safety in Machine Learning Systems, Feb 2021
  10. Witches’ Brew: Industrial Scale Data Poisoning via Gradient Matching
    Jonas Geiping, Liam H. Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and Tom Goldstein
    In International Conference on Learning Representations, Apr 2021

2020

  1. Witchcraft: Efficient PGD Attacks with Random Step Size
    Ping-Yeh Chiang, Jonas GeipingMicah GoldblumTom Goldstein, Renkun Ni, Steven Reich, and Ali Shafahi
    In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020
  2. Fast Convex Relaxations Using Graph Discretizations
    Jonas Geiping, Fjedor Gaede, Hartmut Bauermeister, and Michael Moeller
    In 31st British Machine Vision Conference (BMVC 2020, Oral Presentation), Sep 2020
  3. Inverting Gradients - How Easy Is It to Break Privacy in Federated Learning?
    Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller
    In Advances in Neural Information Processing Systems, Dec 2020
  4. Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory
    In Eighth International Conference on Learning Representations (ICLR 2020, Oral Presentation), Apr 2020
  5. MetaPoison: Practical General-purpose Clean-label Data Poisoning
    W. Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein
    In Advances in Neural Information Processing Systems, Dec 2020

2019

  1. Parametric Majorization for Data-Driven Energy Minimization Methods
    Jonas Geiping, and Michael Moeller
    In Proceedings of the IEEE International Conference on Computer Vision, Dec 2019
  2. Piecewise Rigid Scene Flow with Implicit Motion Segmentation
    Andreas Görlitz, Jonas Geiping, and Andreas Kolb
    In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov 2019

2018

  1. Composite Optimization by Nonconvex Majorization-Minimization
    Jonas Geiping, and Michael Moeller
    SIAM Journal on Imaging Sciences, Jan 2018
  2. Multiframe Motion Coupling for Video Super Resolution
    Jonas Geiping, Hendrik Dirks, Daniel Cremers, and Michael Moeller
    In Energy Minimization Methods in Computer Vision and Pattern Recognition, Jan 2018

2016

  1. Image Analysis of Neural Tissue Development: Variational Methods for Segmentation and 3D-Reconstruction from Large Pinhole Confocal Fluorescence Microscopy
    Jonas Alexander Geiping
    Westfälischen Wilhelms-Universität Münster, Sep 2016

2014

  1. Comparison of Topology-preserving Segmentation Methods and Application to Mitotic Cell Tracking
    Jonas Alexander Geiping
    Sep 2014